Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lei Wang, ${ }^{\text {a }}$ Anwar Usman, ${ }^{\text {b }}$ Hoong-Kun Fun, ${ }^{\text {b }}$ * Yan Zhang ${ }^{\text {a }}$ and Jian-Hua $\mathrm{Xu}^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ${ }^{\text {b }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.042$
$w R$ factor $=0.117$
Data-to-parameter ratio $=11.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

4',5a'-Diphenyl-10-oxospiro[phenanthrene-[9,2']oxeto[5,4-b]oxazole]

In the title compound, $\mathrm{C}_{29} \mathrm{H}_{19} \mathrm{NO}_{3}$, the phenanthrene is out of planarity with its dihydrobenzene ring being distorted towards a half-chair conformation. The relative configuration of the planar oxetane and oxazole rings is conditioned by the Csp ${ }^{3}$ state of the shared atoms.

Comment

In our ongoing research on the photocycloaddition reactions of α-dicarbonyl compounds with oxazole derivatives (Zhang et al., 2003), we have carried out the photoreaction of 9,10phenanthrenedione with 2,5-diphenyloxazole and isolated the title compound, (I). We have also structurally analysed (I) and the results are presented here.

(I)

The bond lengths and angles in (I) (Fig. 1) are within normal ranges (Allen et al., 1987). Those within the fused four/ five-membered rings ($\mathrm{C} 1 / \mathrm{C} 16 / \mathrm{O} 2 / \mathrm{C} 3 / \mathrm{O} 1 / \mathrm{C} 2 / \mathrm{N} 1$) are comparable to the corresponding values in related structures, viz. spiro[indole-3, $2^{\prime}-\left(2^{\prime} \mathrm{a} H, 5^{\prime} \mathrm{a} H\right)$ oxeto[5,4- b]oxazol]-2($1 H$)-one derivatives (Usman et al., 2003). As in these structures, there is elongation of the $\mathrm{C} 1-\mathrm{C} 16$ bond and planarity of the oxetane ring. The dihedral angle between the $\mathrm{O} 2 / \mathrm{C} 3 / \mathrm{C} 1$ and $\mathrm{O} 2 / \mathrm{C} 1 /$ C16 planes is $177.0(1)^{\circ}$ [cf. 176.9 (3)-178.6 (2) $)^{\circ}$; Usman et al., 2003].

The planes through the oxetane and oxazole rings make a dihedral angle of $113.4(1)^{\circ}$. This is a consequence of the $s p^{3}$ hydridization of the shared atoms C 1 and C 3 . The relative configurations of the phenyl rings $\mathrm{C} 4-\mathrm{C} 9$ and $\mathrm{C} 10-\mathrm{C} 15$ with respect to the oxetane-oxazole system are determined by their attached atoms C3 $\left(s p^{3}\right)$ and C2 $\left(s p^{2}\right)$, respectively. The two phenyl rings make dihedral angles of 68.1 (1) and 22.4 (1) ${ }^{\circ}$, respectively, with the oxazole ring.

The phenanthrene is out of planarity with its dihydrobenzene ring (C16-C18/C23/C24/C29) having a half-chair conformation. Atoms C16 and C17 deviate by 0.209 (2) and 0.374 (2) \AA in opposite directions from the C18/C23/C24/C29 plane.

Experimental

The title compound was prepared by photolysis of phenanthrenequine $(0.05 \mathrm{M})$ in the presence of an excess amount of 2,5 -

Received 11 April 2003 Accepted 17 April 2003 Online 30 April 2003
diphenyloxazole in acetonitrile and was separated by column chromatography on silica gel, with petroleum ether-ethyl acetate as eluants. Single crystals suitable for X-ray diffraction measurement were obtained by slow evaporation of a petroleum ether-acetone solution.

Crystal data

$\mathrm{C}_{29} \mathrm{H}_{19} \mathrm{NO}_{3}$
$Z=2$
$M_{r}=429.45$
Triclinic, $P \overline{1}$
$a=8.3475$ (4) \AA 。
$b=11.8671$ (6) \AA
$c=11.9106$ (6) \AA
$\alpha=74.148(1)^{\circ}$
$\beta=89.736(1)^{\circ}$
$\gamma=72.344(1)^{\circ}$
$V=1077.59(9) \AA^{3}$

Data collection

Siemens SMART CCD areadetector diffractometer ω scans
Absorption correction: none
5771 measured reflections
4110 independent reflections

Refinement

Refinement on F^{2}
Z
$D_{x}=1.324 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4070
reflections
$\theta=2.6-28.3^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow
$0.50 \times 0.40 \times 0.30 \mathrm{~mm}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.117$
$S=1.08$
4110 reflections
374 parameters
All H -atom parameters refined

3482 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-10 \rightarrow 7$
$k=-14 \rightarrow 14$
$l=-13 \rightarrow 14$

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0554 P)^{2}\right.
$$

$+0.1949 P$]

where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.20 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{O} 1-\mathrm{C} 2$	$1.376(2)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.449(2)$
$\mathrm{O} 1-\mathrm{C} 3$	$1.440(2)$	$\mathrm{C} 1-\mathrm{C} 3$	$1.543(2)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.427(2)$	$\mathrm{C} 1-\mathrm{C} 16$	$1.586(2)$
$\mathrm{O} 2-\mathrm{C} 16$	$1.453(2)$	$\mathrm{C} 16-\mathrm{C} 29$	$1.506(2)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.273(2)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.519(2)$
C16-C1-C3-O2	$-2.0(1)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 16-\mathrm{C} 29$	$13.38(18)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 3-\mathrm{O} 1$	$0.8(1)$		

All H atoms were located from a difference Fourier map and refined isotropically $[\mathrm{C}-\mathrm{H}=0.92$ (2) -1.02 (2) $\AA]$. Owing to the large fraction of weak data at higher angles, the 2θ maximum was limited to 52°. The maximum and minimum electron-density peaks are located $0.98 \AA$ from O3 and $1.29 \AA$ from C6, respectively.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publi-

Figure 1
The structure of compound (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
cation: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 304/ PFIZIK/670011. AU thanks Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Usman, A., Fun, H.-K., Wang, L., Zhang, Y. \& Xu, J.-H. (2003). Acta Cryst. C59. In the press.
Zhang, Y., Wang, L. \& Xu, J.-H. (2003). In preparation.

